
{

A

B

C

D
E

F

Step 1: Open the File Menu and create a “New” Doc-
ument using the “Rhombic Tetrahedral” space grid.

A) Create a new Shape.
B) Set XYZ size to 5 units each.
C) Enable the “fixed pixel” drawing tool.
D) Enable the “painting” cursor.
E) Disable all “mirroring” and “layer spanning” tools.
F) Set the grid editor to the back (lowest) layer.

Step 2: Click once in each of the four empty regions of
the grid editor -- each will fill with a fixed voxel.

Step 3: Adjust the zoom level of the 3D viewer so that the
shape comfortably fills the 3D viewer window. Give yourself
some spatial perspective by dragging the mouse in the 3D
vewer window to rotate the shape.

Step 4: Move the grid editor forward one layer, and then
click once in each of the four empty regions. Notice how the
shape changes in the 3D viewer. Frequently rotating the
shape in the 3D viewer will help you maintain spatial perspec-
tive of what is happening as you add voxels to the model.

Step 5: Move the grid editor forward another layer. No-
tice that there are eight empty regions in this layer. Click once
in each of these eight regions, paying attention to how it af-
fects the model in the 3D viewer.

Step 6: Move the grid editor forward another layer. No-
tice that there are once again four empty regions in this layer.
Click once in each of the four empty regions.

Step 7: Move the grid editor forward one last time to the
front layer of the shape. Fill in all four regions to complete the
solid 5x5x5 voxel cube.

Step 8: Click on the “Double Size” button to turn the
solid 5x5x5 cube into a solid 10x10x10 cube. You will need to
adjust the zoom level of the 3D viewer again.

Planning Ahead: Hidden inside of the 10x10x10
voxel cube is a “size one” rhombic dodecahedron. “Size one”
means that it is the smallest RD that can be modeled using
the BurrTools rhombic tetrahedral space grid, and hereafter
will be referred to as a “1xRD unit”

The process of removing excess voxels from the 10x10x10
cube is like peeling the skin away from fruit. Notice how the
midpoints of each edge are connected, and then used as cut
lines for the “peeling” process.

Note: You may
also do the peeling in the 3D viewer window by holding the
CTRL button and clicking on voxels that you want to remove.
Unintentionally removed voxels may be filled back in place by
holding the SHIFT button instead of CTRL.

Step 9: You have probably got your 3D viewer all jum-
bled up by now, so take this opportunity to line things up so
that you are looking at the front of the cube. Notice how the
red and green axes in the bottom left corner of the 3D viewer
are aligned with the ones in the bottom left corner of the grid
editor.

Step 10: Enable the “remove voxels” tool, and also
enable Z-axis “layer spanning” mode. Make sure that the
grid editor is set to the front most layer, and then click once
in each of the eight corner regions, as shown.

Step 11: Move the grid editor back one layer and then
repeat the eight mouse clicks to remove further material.

Step 12: Move the grid editor back one more layer.
Notice that (as was the case in Step 5) there are twice as
many regions to click on this time. (this happens every five
layers...) Click on these sixteen regions to complete the
peeling process for the Z axis of the model.

Step 13: The
“peeling” process must be done along all three cartesian axes
three cartesian axes in order to reveal the 1xRD unit. Rather
than changing the tool setup or 3D viewer orientation, instead
do a single X-axis rotate transformation.

Step 14: With the model rotated and ready for more
voxel removal, go ahead and click on the same 16 regions
that you removed in Step 12. Be sure to click on all 16, and
not any others.

Step 15: Move the grid editor forward one layer and
click in the appropriate corner regions to continue along with
the peeling process. Doing it again for the front most layer
of the model should complete the second round of cuts.

Step 16: All that is needed to set up the model for the
third set of cuts is a single Y-axis rotate transformation.

Step 17: Repeat the same sequence of actions on
the front three layers of the model to complete the peeling
process. Congratulations, you have just created a rhombic
dodecahedron!!

Analysis: If you are already familiar with using BurrTools
in Z-axis layer spanning mode, then you may be wondering
why it was necessary to click on the same (or at least similar)
regions on three different layers in order to get the job done.
To understand the reason for this, consider the manner in
which BurrTools emulates the rhombic tetrahedral space grid
onto a cubic matrix of program memory. Notice that most
memory cells in the 5x5x5 voxel grid are not used, and also
notice that of the 24 which are used, most share their (rank /
row / column) with at most one other cell in the 5x5x5 grid.

Step 18: Before we go wild cutting up our 1xRD unit
into smaller (and more useful) pieces, let’s make a copy of it
first. BurrTools does not have any sort of UNDO feature, so
it is good practice to frequently make copies of your models
whenever you are happy with a series of changes.

Step 19: Using either the three-step Z-axis layer span-
ning technique in the grid editor, or using rapid-fire CTRL-
clicking in the 3D viewer, remove 3/4 of the copy of your 1xRD
unit, as shown here.

The remaining quarter of the 1xRD unit is a very useful shape
called a six sided center block, or 1x6SCB. Rotate the 3D
viewer around to get a sense for what this shape looks like,
and also switch back and forth between the 1xRD unit and the
1x6SCB to get a sense for how a 1xRD unit can be thought of
as four 1x6SCB units put together.

Step 20: If you haven’t been using the 3D viewer
method of editing the model, then make another copy of the
1xRD unit and practice cutting it into 1x6SCB units by CTRL-
clicking away the unwanted voxels. Also, try this with various
rotations of the model in the 3D viewer -- not just the view-
ing angle shown in Step 19. Make several more copies of
these 1x6SCB units, and try cutting them up into the following
shapes:

The Octahedral Block (or 1xOCT) is made from a
1x6SCB by removing the pointy ends...

The Left Handed Prism Block (or 1xLHP) is
made from a 1x6SCB by cutting it in half along one leg of its
central “X” shaped ridge line...

The Right Handed Prism Block (or 1xRHP) is
made from a 1x6SCB by cutting it in half along the other leg of
its central “X” shaped ridge line...

The Rhombic Pyramid (or 1xRP) is made from a
1x6SCB by cutting along both legs of its central “X” shaped
ridge line...

The Tetrahedral Block (or 1xTET) is half of a
1xRP. It is the shape of the pointy tips that get removed from
a 1x6SCB to create a 1xOCT. All of the basic shapes listed
here can be divided cleanly into tetrahedral blocks like this
one...

...and as long as we’re listing them all off, here again is the

Six Sided Center Block (or 1x6SCB)...

...and the Rhombic Dodecahedron (or 1xRD)

Step 21: Make a copy of a 1x6SCB and then, using the
3D viewer, SHIFT-click on the four locations shown here...

...the resulting shape is one of six identical pieces that make
up the Diagonal Star puzzle.

Step 22: Make a solid 10x10x10 voxel cube, and then,
using the 3D viewer, CTRL-click away the outer layer of two
adjacent faces, leaving alone the orange-shaded regions as
shown here...

This is what the model looks like after clicking away one of the
six faces of the 10x10x10 cube. Exactly 12 voxels have been
removed.

This is what the model looks like after clicking away the ap-
propriate voxels on the adjacent face of the 10x10x10 cube.
12 more voxels (24 total) have been removed from the solid
cube.

Step 23: Continue removing 12 voxels from each face
of the 10x10x10 cube, being sure to do so in a manner that
maintains the symmetry of the resulting shape. This is what
the model looks like after removing the appropriate voxels
from three faces of the cube...

...and this is what the model looks like after all six faces have
had the appropriate 12 voxels removed. This model is the as-
sembled shape of the Diagonal Burr puzzle. “But wait!” you
may be thinking to yourself, “Wasn’t the puzzle piece that we
made for the Diagonal Star puzzle, not the Diagonal Burr?”

Step 24: Yes, that’s true... so let’s do both puzzles then.
Make a copy of the Diagonal Burr that you just made, and
CTRL-click away the four voxels on each face that you were
being careful to avoid during Steps 22 and 23. That’s 24
voxels total that you need to remove. The resulting shape
is what the assembled Diagonal Star puzzle looks like... but
this shape also has a more technical name: The First Stella-
tion of the Rhombic Dodecahedron!!

Step 25: Make a copy of the Diagonal Star puzzle piece,
and then either SHIFT-click on the appropriate four voxels as
shown here, or you can try this trick with the grid editor which
adds all four voxels at once: Make sure that all three layer-
spanning modes are disabled, and then enable the Y-axis and
Z-axis mirroring modes. Move to either the front or back layer,
and then click once as shown. Notice how the 3D viewer dis-
plays a wireframe preview of what voxels will be added.

Regardless of what method you choose to add the voxels, the
resulting shape is one of six identical pieces that make up the
Diagonal Burr puzzle.

Step 26: Switch over to the Puzzle tab and create a New
puzzle. Select the assembled Diagonal Burr puzzle shape
and click the Set Result button. Then select the Diagonal
Burr puzzle piece shape and click the +1 button six times.

Repeat this process for the Diagonal Star puzzle, starting out
by defining another New puzzle, then setting the result shape,
and lastly adding six copies of the Diagonal Star puzzle piece
shape.

Step 27: Switch over to the Solver tab and select the Di-
agonal Burr puzzle Parameters (P1) that you defined in Step
26. Click the Start button to get things going.

Repeat these same steps (Select Parameters, then click
Start) to analyze the Diagonal Star puzzle (P2).

If solutions were found, you can browse through them by drag-
ging the Solutions slider.

Rotate the model in the 3D viewer, and toggle the visibility of
individual pieces to help visualize and understand the solu-
tion.

Advanced Analysis:
Switch back over to the Entities tab and create a copy of the Diagonal
Star puzzle piece. Now, using the 3D viewer, SHIFT-click another
Diagonal Star puzzle piece shaped cluster of voxels next
to the first one, as shown here.

Switch to the Tools sub-
tab, and click on the green colored Make Out-

side Variable button. Notice how the model gets
a checkered appearance. Now click on the red col-

ored Make Outside Fixed button to restore the original appearance. Although this
technique of looking at the way that BurrTools renders variable voxels is not using them

for their intended purpose, it is nonetheless a useful tool for analyzing the way that the
voxels are clustering together. Notice that when seen with a variable exterior, the two
copies of the Diagonal Star puzzle piece shown here obviously have different

clustering patterns. Could this cause problems?

Although these two different tiling patterns are geomet-
ricaly equivilant when considering the solid shape that
they represent, they are NOT equivalent when consid-
ering the way that the cluster of voxels are arranged in
the cubic matrix of program memory. Consider the 1xTET
memory emulation diagram on the left.

The shape of the 1xTET has symmetry such that,
when the shape is flipped over and turned sideways, it occupies the same
cross section of space as before. The BIG PROBLEM here is that the Bur-
rTools right-angle-tetrahedron memory emulation method is NOT so friendly
about flipping and rotating, as seen in the diagram on the right.

It turns out that yes, it really is quite easy to encounter this problem as you
are working on a rhombic tetrahedral space grid project with BurrTools.
Consider the two ways that a 1xTET can be removed from
a 1xLHP to produce a 1xRP, as shown here. BurrTools will
not find a solution if you create a set of puzzle parameters
(see Step 26) attempting to fit one of these
versions of the 1xRP into the other ver-
sion as the result shape.

The problem, it seems, is that the shape of a single voxel is such
that a 1xTET may be divided in half along one of its 90º edges,
but not the other. Perhaps this complication may be solved
by redesigning the basic voxel shape, or perhaps modifying
the memory emulation of the existing voxel shape?

As it turns out, such drastic measures may not be need-
ed. The problem resolves itself nicely when the size of
the model is doubled. Consider this memo-
ry emulation diagram of a 2xTET unit, and
notice that this grid DOES trans-
form cleanly when the 2xTET
is flipped and rotated.

Further contemplation of the situation will lead you to realize that this is
not the only way to emulate a 2xTET... if each of the eight 1xTET units
contained within the 2xTET were individually flipped and rotated, the
resulting emulation would look quite diferent from this one, yet it too is a
valid way to tesselate 2x RD geometry.

Is this a problem? Yes, insofar that you still cannot mix-and-match shapes
made by the two 2x tesselation methods in a set of puzzle parameters expect-
ing to get good results... On the other hand, if all of the shapes in
a set of puzzle parameters are built using the same 2x tesselation
method, then the BurrTools solver has no problems, and we get the
results that we expect. In an effort to eliminate problems before they
ever come up, we have designed the Double Size of Shape button
to always build 2x shapes using the same tessalation method.

Considering this matter from
the standpoint of how it affects

your user experience, we decided that for now it would be
best to let you build any shapes that you want in 1x geometry,

and then leave it up to you to do the 2x transformation before defin-
ing any puzzle parameters and running the solver. The benefit

of doing it this way is twofold: firstly, editing shapes in 1x
geometry involves eight times less clicking that editing 2x

geometry... and secondly, it is possible to run analysis on
many (but not all) puzzles using 1x geometry if the shapes are

all built using compatible tesselation methods. This can be useful if
you want the solver to run as fast as possible... but for most applications, the best

approach is to always double the size of your shapes before running the solver.

